1 Anhang

Wir betrachten den 1s-Zustand des Wasserstoffatoms. Sein ungestörter Hamiltonoperator wird mit $H^{(0)}$ bezeichnet. Nun sollen kumulativ verschiedene Störungen betrachtet werden.

1.1 Feinstruktur

Die Korrekturen 1. Ordnung zu den Eigenwerten des Hamiltonoperators, die aus den Feinstrukturtermen stammen, sollen berechnet werden. Die Korrektur kann man für das 1s-Niveau als $H = H^{(0)} + K_{FS}$ schreiben.

Die drei Feinstrukturkorrekturterme stammen aus

Korrekturen zur kinetischen Energie
$$H_{kin} = -\frac{p^4}{8m^3c^2}$$
 der Spin-Bahn-Kopplung $H_{LS} = \frac{\hbar}{2m^2c}\frac{\alpha}{r^3}\vec{L}\cdot\vec{S}$ dem Darwin-Term $H_D = \frac{\pi\hbar^3\alpha}{2m^2c}\delta\left(\vec{x}\right)$

Der gestörte Hamiltonoperator hat also die Form $H = H^{(0)} + H_{kin} + H_{LS} + H_D = H^{(0)} + K_{FS}$. Der ungestörte Hamiltonoperator, sowie dessen ungestörte Eigenfunktion und -zustand zum 1s-Niveau lauten

$$H^{(0)} = \frac{p^2}{2m} + V(R) = \frac{p^2}{2m} - \frac{\hbar c\alpha}{R}$$

$$\Psi_{1s}^{(0)} = R_{10}(r)Y_0^0(\theta,\varphi) = \frac{1}{\sqrt{\pi}a_0^{3/2}} \exp\left(-\frac{r}{a_0}\right) = \langle \vec{x}|100\rangle$$

$$E_{1s}^{(0)} = -\frac{1}{2}\alpha^2 mc^2$$

Die Störterme 1. Ordnung berechnen sich nun zu

$$\Delta^{(1)} = \langle 100|K_{FS}|100\rangle = \langle 100|H_{kin} + H_{LS} + H_D|100\rangle$$
$$= \langle 100|H_{kin}|100\rangle + \langle 100|H_{LS}|100\rangle + \langle 100|H_D|100\rangle$$
$$= \Delta^{(1)}_{kin} + \Delta^{(1)}_{LS} + \Delta^{(1)}_{D}$$

Beginnen wir mit $H_{kin}=-\frac{p^4}{8m^3c^2}$ Aus dem ungestörten Hamiltonoperator folgt

$$H^{(0)} = \frac{p^2}{2m} - V(R) \Rightarrow p^4 = 4m^2 \left(H^{(0)} - V(R)\right)^2$$

$$\Rightarrow H_{kin} = -\frac{4m^2 \left(H^{(0)} - V(R)\right)^2}{8m^3 c^2}$$

$$= -\frac{1}{2mc^2} \left(\left(H^{(0)}\right)^2 - 2H^{(0)}V(R) + V(R)^2\right), \text{ da } \left[H^{(0)}, V(R)\right] = 0$$

Daraus folgt der Korrekturterm $\Delta_{kin}^{(1)}$

$$\Delta_{kin}^{(1)} = \langle 100|H_{kin}|100\rangle
= -\frac{1}{2mc^2} \left(\langle 100| \left(H^{(0)}\right)^2 |100\rangle - 2\langle 100|H^{(0)}V(R)|100\rangle + \langle 100|V(R)^2|100\rangle \right)
= -\frac{1}{2mc^2} \left(\left(E_{1s}^{(0)}\right)^2 - 2E_{1s}^{(0)}\langle 100| - \frac{\hbar c\alpha}{R} |100\rangle + \langle 100| \frac{\hbar^2 c^2 \alpha^2}{R^2} |100\rangle \right)$$

Aus der Vorlesung ist bekannt:

$$\langle R_{nl} | \frac{1}{r} | R_{nl} \rangle = \frac{Z}{a_0 n^2}$$

$$\langle R_{nl} | \frac{1}{r^2} | R_{nl} \rangle = -\frac{2Z^2}{a_0^2 n^3 (2l+1)}$$

$$\text{mit } a_0 = \frac{\hbar}{m \alpha c}$$

Für das 1s-Niveau des Wasserstoffatoms mit n = 1, l = 0 und Z = 1 ergibt sich

$$\begin{split} \Delta_{kin}^{(1)} &= -\frac{1}{2mc^2} \left(\frac{1}{4} \alpha^4 m^2 c^4 - \alpha^2 m c^2 \frac{\hbar c \alpha}{a_0} + \frac{2\hbar^2 c^2 \alpha^2}{a_0^2} \right) \\ &= -\frac{1}{2mc^2} \left(\frac{1}{4} \alpha^4 m^2 c^4 - \alpha^4 m^2 c^4 + 2\alpha^4 m^2 c^4 \right) \\ &= -\frac{5}{8} \alpha^4 m c^2 \end{split}$$

Die Korrektur durch Spin-Bahn-Kopplung ist vergleichsweise einfach. Im 1s-Niveau ist l=0, also $\vec{L}=0,$ weshalb

$$H_{LS} = \frac{\hbar}{2m^2c} \frac{\alpha}{r^3} \vec{L} \cdot \vec{S} = 0$$

$$\Rightarrow \Delta_{LS}^{(1)} = 0$$

Zuletzt noch die Korrekturen aufgrund des Darwinterms $H_D = \frac{\pi \hbar^3 \alpha}{2m^2 c} \delta\left(\vec{x}\right)$

$$\Delta_D^{(1)} = \langle 100 | H_D | 100 \rangle = \frac{\pi \hbar^3 \alpha}{2m^2 c} \int \delta(\vec{x}) \left| \frac{1}{\sqrt{\pi} a_0^{3/2}} \exp\left(-\frac{r}{a_0}\right) \right|^2 d^3 x$$
$$= \frac{1}{2} \alpha^4 mc^2$$

Insgesamt ergibt sich für den gestörten Energieeigenwert 1. Ordnung

$$\begin{split} E_{1s}^{(1)} &= E_{1s}^{(0)} + \Delta_{kin}^{(1)} + \underbrace{\Delta_{LS}^{(1)}}_{=0} + \Delta_{D}^{(1)} \\ &= -\frac{1}{2}\alpha^{2}mc^{2} - \frac{5}{8}\alpha^{4}mc^{2} + \frac{1}{2}\alpha^{4}mc^{2} \\ &= -\frac{1}{2}\alpha^{2}mc^{2} - \frac{1}{8}\alpha^{4}mc^{2} \end{split}$$

1.2 Hyperfeinstruktur

Nun soll eine weitere, schwächere Korrektur, die Hyperfeinstruktur, betrachtet werden. Sie entsteht durch das vom Kernspin erzeugte Magnetfeld. Die Hyperfeinstruktur enthält folgende Korrekturterme:

$$W_{HFS} = \frac{e^2 g_p}{2 M_p m c^2} \left\{ \frac{1}{r^3} \vec{L} \cdot \vec{I} + \frac{1}{r^3} \left[\frac{3}{r^2} \left(\vec{S} \cdot \vec{r} \right) \left(\vec{I} \cdot \vec{r} \right) - \vec{S} \cdot \vec{I} \right] + \frac{8 \pi}{3} \vec{S} \cdot \vec{I} \delta \left(\vec{r} \right) \right\}$$

S und I bezeichnen den Spin, m und M_p die Masse des Elektrons bzw. des Protons. $g_P=5,585$ ist das gyromagnetische Moment des Protons, \vec{r} den vom Proton zum Elektron zeigenden Vektor und $r=|\vec{r}|$ die Länge dieses Vektors. Für den 1s-Zustand tragen die ersten beiden Terme in W_{HFS} nicht bei, weshalb lediglich die Raumintegration für das Matrixelement

$$\langle n=1; l=0; m_l=0; m_S'; m_I' | \frac{4\pi e^2 g_p}{3M_p mc^2} \vec{S} \cdot \vec{I} \delta (\vec{r}) | n=1; l=0; m_l=0; m_S; m_I \rangle$$

durchgeführt werden muss. Die Korrekturen aus Feinstruktur und Hyperfeinstruktur können dann als $H = H^{(0)} + K_{FS} + A\vec{I} \cdot \vec{S}$ geschrieben werden. A soll berechnet werden, sowie die Eigenzustände des Operators $A\vec{I} \cdot \vec{S}$ angegeben werden.

Dabei wirkt $\delta(\vec{r})$ nur auf den Ortsanteil, $\vec{S} \cdot \vec{I}$ hingegen nur auf den Spinanteil.

$$\begin{split} \langle 100; m_S'; m_I' | \frac{4\pi e^2 g_p}{3M_p m c^2} \vec{S} \cdot \vec{I} \delta \left(\vec{r} \right) | 100; m_S; m_I \rangle \\ &= \frac{4\pi e^2 g_p}{3M_p m c^2} \langle 100 | \delta \left(\vec{r} \right) | 100 \rangle \langle m_S'; m_I' | \vec{S} \cdot \vec{I} | m_S; m_I \rangle \\ &= \frac{4\pi e^2 g_p}{3M_p m c^2} \cdot \frac{1}{\pi a_0^3} \langle m_S'; m_I' | \vec{S} \cdot \vec{I} | m_S; m_I \rangle \\ &= \frac{4g_p \mu^3 c^2 \alpha^4}{3\hbar^2 M_p m} \langle m_S'; m_I' | \vec{S} \cdot \vec{I} | m_S; m_I \rangle = A \cdot \langle m_S'; m_I' | \vec{S} \cdot \vec{I} | m_S; m_I \rangle \\ &= \frac{m M_p}{m + M_p} \Rightarrow A = \frac{4g_p^3 m^2 M_p^2 c^2 \alpha^4}{3\hbar^2 \left(m + M_p \right)} \end{split}$$

Um die Eigenzustände des Operators $A\vec{I}\cdot\vec{S}$ zu berechnen führt man den Gesamtdrehimpuls $\vec{F}=\vec{I}+\vec{S}$ ein, sodass $\vec{I}\cdot\vec{S}=\frac{1}{2}\left(\vec{F}^2-\vec{S}^2-\vec{I}^2\right)$. In unserem Fall sind $s=\frac{1}{2}$ und $i=\frac{1}{2}$, weshalb f=1 oder f=0 möglich sind. Die Eigenzustände von $A\vec{I}\cdot\vec{S}$ sind in der Basis $|f|m_f\rangle$ also

$$|1 \ 1\rangle$$
, $|1 \ 0\rangle$, $|1 \ -1\rangle$, $|0 \ 0\rangle$

Die Eigenwerte ergeben sich zu

Explizit:

$$\begin{array}{ll} f=1 & A\vec{I}\cdot\vec{S}|1\ m_f\rangle = \frac{1}{4}A\hbar^2|1\ m_f\rangle \\ f=0 & A\vec{I}\cdot\vec{S}|0\ 0\rangle = -\frac{3}{4}A\hbar^2|0\ 0\rangle \end{array}$$

(Auszug aus QM II Übungsblatt 6 von Martin Will)